📆 Course Schedule

📆 Course Schedule#

Note

This schedule is subject to change as appropriate.

Last Updated: 30 Jun 2024

Reading:

  • S: Simeone, Machine Learning for Engineers (Required)

  • M: Murphy, Probabilistic Machine Learning (Optional)

  • B: Biship, Pattern Recognition and Machine Learning (Optional)

Lsn

Topic

Due

Reading

1

Course Intro

2

Intro to Machine Learning

Cadet Intro

3

Linear Algebra

HW1

4

Basis

HW2

3Blue1Brown

5

Eigenvalues & Eigenvectors

3Blue1Brown

6

Least Squares Estimation

HW3

7

Least Squares Estimation

8

Lab1: Python & LSE

HW4

9

Joint Distributions

10

Multivariate Gaussian

HW5

11

Optimal Estimation

12

Recursive Estimation

HW6

13

Recursive Estimation

14

Kalman Filter

HW7

Understanding KF

15

Kalman Filter

16

Kalman Filter

HW8

17

GR1 (L1-L17)

18

Project 1

19

20

Proj1

21

Statistical Inference

22

MLE

23

Linear Regression

HW9

24

Linear Regression

25

Gradient Descent

26

Logistic Regression

27

Naive Bayes

HW10

28

Assessment & Validation

29

MAP

30

Regularization

HW11

31

SVM

32

Snow-Day

HW12

33

Neural Networks

34

Back propagation

HW13

35

GR2

36

Final Project

HW14

37

Final Project

Thanksgiving Break

38

Final Project

39

Final Project

40

Final Project

Final Report