📆 Course Schedule#
Note
This schedule is subject to change as appropriate.
Last Updated: 30 Jun 2024
Reading:
S: Simeone, Machine Learning for Engineers (Required)
M: Murphy, Probabilistic Machine Learning (Optional)
B: Biship, Pattern Recognition and Machine Learning (Optional)
Lesson |
Topic |
Due |
Reading |
---|---|---|---|
1 |
Course Intro |
||
2 |
Intro to Machine Learning |
Cadet Intro |
S:1.1-1.6 |
3 |
Linear Algebra |
HW1 |
S:2.5-2.6,M:7.1 |
4 |
Basis |
||
5 |
Eigenvalues & Eigenvectors |
HW2 |
|
6 |
Eigenvalues & Eigenvectors |
||
7 |
Least Squares Estimation |
HW3 |
B:1.1 |
8 |
Least Squares Estimation |
B:1.1 |
|
9 |
Special Topic |
HW4 |
|
10 |
Lab1: Python & LSE |
||
11 |
Joint Distributions |
HW5 |
S:2.1-2.4,2.7-2.8 |
12 |
Multivariate Gaussian |
Lab1 |
S:2.9-2.10,M:2.1-2.2,B: 1.2 |
13 |
Optimal Estimation |
HW6 |
|
14 |
Recursive Estimation |
||
15 |
Recursive Estimation |
||
16 |
Kalman Filter |
HW7 |
|
17 |
Kalman Filter |
||
18 |
Kalman Filter |
HW8 |
|
19 |
GR1 (L1-L17) |
||
20 |
Project 1 |
||
21 |
Statistical Inference |
S:3.1-3.9, B:3.2-3.3 |
|
22 |
MLE |
Proj1 |
M:4.2 |
23 |
Linear Regression |
HW9 |
S:4.1-4.3 |
24 |
Linear Regression |
M:11.2 |
|
25 |
Gradient Descent |
S:5.8-5.10 |
|
26 |
Logistic Regression |
S:6.3, B:4.3 |
|
27 |
Naive Bayes |
HW10 |
M:9.3 |
28 |
Assessment & Validation |
S:4.4-4.6 |
|
29 |
MAP |
S:4.7-4.11 |
|
30 |
Regularization |
HW11 |
S:4.7-4.11 |
31 |
SVM |
||
32 |
Snow-Day |
HW12 |
S:5.14-5.15 |
33 |
Neural Networks |
S:6.4 |
|
34 |
Back propagation |
HW13 |
S:5.14-5.15 |
35 |
GR2 |
||
36 |
Final Project |
HW14 |
|
37 |
Final Project |
||
Thanksgiving Break |
|||
38 |
Final Project |
||
39 |
Final Project |
||
40 |
Final Project |
Final Report |