📆 Course Schedule#

Note

This schedule is subject to change as appropriate.

Last Updated: 30 Jun 2024

Reading:

  • S: Simeone, Machine Learning for Engineers (Required)

  • M: Murphy, Probabilistic Machine Learning (Optional)

  • B: Biship, Pattern Recognition and Machine Learning (Optional)

Lesson

Topic

Due

Reading

1

Course Intro

2

Intro to Machine Learning

Cadet Intro

S:1.1-1.6

3

Linear Algebra

HW1

S:2.5-2.6,M:7.1

4

Basis

3Blue1Brown

5

Eigenvalues & Eigenvectors

HW2

3Blue1Brown

6

Eigenvalues & Eigenvectors

7

Least Squares Estimation

HW3

B:1.1

8

Least Squares Estimation

B:1.1

9

Special Topic

HW4

10

Lab1: Python & LSE

11

Joint Distributions

HW5

S:2.1-2.4,2.7-2.8

12

Multivariate Gaussian

Lab1

S:2.9-2.10,M:2.1-2.2,B: 1.2

13

Optimal Estimation

HW6

14

Recursive Estimation

15

Recursive Estimation

16

Kalman Filter

HW7

Understanding KF

17

Kalman Filter

18

Kalman Filter

HW8

19

GR1 (L1-L17)

20

Project 1

21

Statistical Inference

S:3.1-3.9, B:3.2-3.3

22

MLE

Proj1

M:4.2

23

Linear Regression

HW9

S:4.1-4.3

24

Linear Regression

M:11.2

25

Gradient Descent

S:5.8-5.10

26

Logistic Regression

S:6.3, B:4.3

27

Naive Bayes

HW10

M:9.3

28

Assessment & Validation

S:4.4-4.6

29

MAP

S:4.7-4.11

30

Regularization

HW11

S:4.7-4.11

31

SVM

32

Snow-Day

HW12

S:5.14-5.15

33

Neural Networks

S:6.4

34

Back propagation

HW13

S:5.14-5.15

35

GR2

36

Final Project

HW14

37

Final Project

Thanksgiving Break

38

Final Project

39

Final Project

40

Final Project

Final Report