📆 Course Schedule

📆 Course Schedule#

Note

This schedule is subject to change as appropriate.

Last Updated: 30 Jun 2024

Reading:

  • S: Simeone, Machine Learning for Engineers (Required)

  • M: Murphy, Probabilistic Machine Learning (Optional)

  • B: Biship, Pattern Recognition and Machine Learning (Optional)

Lsn

Topic

Due

Reading

1

Course Intro

2

Intro to Machine Learning

Cadet Intro

3

Linear Algebra

HW1

4

Basis

HW2

3Blue1Brown

5

Eigenvalues & Eigenvectors

3Blue1Brown

6

Least Squares Estimation

HW3

7

Least Squares Estimation

8

Lab1: Python & LSE

HW4

9

Joint Distributions

10

Multivariate Gaussian

HW5

11

Optimal Estimation

12

Recursive Estimation

HW6

13

Kalman Filter

Understanding KF

14

Kalman Filter

HW7

15

Project 1

16

Project 1

HW8

17

GR1 (L1-L17)

18

Conditional Independence

19

MLE

Proj1

20

MAP

HW9

21

Linear Regression

22

Linear Regression

HW10

23

Gradient Descent

24

Logistic Regression

HW11

25

Naive Bayes

26

Assessment & Validation

HW12

27

Regularization

28

SVM

HW13

29

Neural Networks

30

Back propagation

HW14

31

Back propagation

32

Project 2

33

Project 2

34

35

GR2

36

Final Project

37

Final Project

Thanksgiving Break

38

Final Project

39

Final Project

40

Final Project

Final Report