📆 Course Schedule

📆 Course Schedule#

Note

This schedule is subject to change as appropriate.

Last Updated: 30 Jun 2024

Reading:

  • S: Simeone, Machine Learning for Engineers (Required)

  • M: Murphy, Probabilistic Machine Learning (Optional)

  • B: Biship, Pattern Recognition and Machine Learning (Optional)

Lsn

Topic

Due

Reading

1

Course Intro

2

Intro to Machine Learning

Cadet Intro

3

Linear Algebra

HW1

4

Basis

HW2

3Blue1Brown

5

Eigenvalues & Eigenvectors

3Blue1Brown

6

Least Squares Estimation

HW3

7

Least Squares Estimation

8

Lab1: Python & LSE

HW4

9

Joint Distributions

10

Multivariate Gaussian

HW5

11

Optimal Estimation

12

Recursive Estimation

HW6

13

Kalman Filter

Understanding KF

14

Kalman Filter

HW7

15

Project 1

16

Project 1

HW8

17

GR1 (L1-L16 & HW1-HW8)

18

Product Rule

19

Bayes & Conditional Independence

Proj1

20

Maximum Likelihood Estimate

21

Maximum Likelihood Estimate

22

Special Topic (Col Trimble)

HW9

23

Maximum a Priori

24

Linear Regression

HW10

25

Linear Regression

26

Gradient Descent

HW11

27

Logistic Regression

28

Naive Bayes

HW12

29

Assessment & Validation

30

Regularization

HW13

31

SVM

32

Neural Networks

HW14

33

Back propagation

34

Final Project

HW15

35

GR2

36

Final Project

37

Final Project

Thanksgiving Break

38

Final Project

39

Final Project

40

Final Project

Final Report